39 research outputs found

    Guppy: Process-Oriented Programming on Embedded Devices

    Get PDF
    Guppy is a new and experimental process-oriented programming language, taking much inspiration (and some code-base) from the existing occam-pi language. This paper reports on a variety of aspects related to this, specifically language, compiler and run-time system development, enabling Guppy programs to run on desktop and embedded systems. A native code-generation approach is taken, using C as the intermediate language, and with stack-space requirements determined at compile-time

    Communicating Mobile Processes

    Get PDF
    This paper presents a new model for mobile processes in occam-pi. A process, embedded anywhere in a dynamically evolving network, may suspend itself mid-execution, be safely disconnected from its local environment, moved (by communication along a channel), reconnected to a new environment and reactivated. Upon reactivation, the process resumes execution from the same state (i.e. data values and code positions) it held when it suspended. Its view of its environment is unchanged, since that is abstracted by its synchronisation (e.g. channels and barriers) interface and that remains constant. The environment behind that interface will (usually) be completely different. The mobile process itself may contain any number of levels of dynamic sub-network. This model is simpler and, in some ways, more powerful than our earlier proposal, which required a process to terminate before it could be moved. Its formal semantics and implementation, however, throw up extra challenges. We present details and performance of an initial implementation

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    tranx86 -- an Optimising ETC to IA32 Translator

    Get PDF
    tranx86 -- an Optimising ETC to IA32 Translator ----------------------------------------------- F.R.M. Barnes Communicating Process Architectures 2001 (WoTUG 24) This paper describes tranx86, a program which converts Extended Transputer Code (ETC) from a modified Inmos occam compiler, into IA32 code for execution on the Intel i386 family of processors within the KRoC/Linux system. Several optimisations are employed in an attempt to maximise performance on this family of processors, including optimisations in the CCSP run-time kernel. These include a graph-colouring type register allocation scheme and various inlining of code. While tranx86 is mostly architecture dependent, effort has been made to allow the use of arbitrary schedulers, although currently CCSP is the only fully supported one. Various benchmark programs are used to compare the performance of this translator with the old system, giving significant time wins in some cases. For the commstime benchmark program on an 800 MHz Pentium-3, the old KRoC/Linux system gave 233 ns per communication (2 context switches); the new one, with optimisations and inlining, gives 67 ns per communication -- more than a 3-fold reduction in overheads

    Compiling CSP

    Get PDF
    CSP, Hoare's Communicating Sequential Processes, is a formal language for specifying, implementing and reasoning about concurrent processes and their interactions. Existing software tools that deal with CSP directly are largely concerned with assisting formal proofs. This paper presents an alternative use for CSP, namely the compilation of CSP systems to executable code. The main motivation for this work is in providing a means to experiment with relatively large CSP systems, possibly consisting millions of concurrent processes --- something that is hard to achieve with the tools currently available

    Blocking System Calls in KRoC/Linux

    Get PDF
    This paper describes an extension to Kent Retargetable occam Compiler (KRoC), which enables the execution of a blocking call, without blocking the occam-kernel. This allows a process to make a blocking system call (eg, read, write), without blocking processes running in parallel with it. Blocking calls are implemented using Linux clones which communicate using shared memory, and synchronise using kernel level semaphores. The usefulness of this is apparent in server applications with a need to handle multiple clients simultaneously. An implementation of an occam web-server is described in section 5, which uses standard TCP sockets via an occam socket library. The web-server comes with the ability to execute CGI scripts as well as dispensing static pages, which demonstrates some level of OS process management from within occam. However, this mechanism is not limited to blocking in the Linux kernel. On multi- processor machines, the clones are quite free to be scheduled on different processors, allowing computationally heavy processing to be performed aside the occam world, but still with a reasonable level of interaction with it. Using them in this way provides a coarse-grained level of parallelism from within the fine-grained occam world

    A CSP Model for Mobile Channels

    Get PDF
    CSP processes have a static view of their environment -- a fixed set of events through which they synchronise with each other. In contrast, the pi-calculus is based on the dynamic construction of events (channels) and their distribution over pre-existing channels. In this way, process networks can be constructed dynamically with processes acquiring new connectivity. For the construction of complex systems, such as Internet trading and the modeling of living organisms, such capabilities have an obvious attraction. The occam-pi multiprocessing language is built upon classical occam, whose design and semantics are founded on CSP. To address the dynamics of complex systems, occam-pi extensions enable the movement of channels (and multiway synchronisation barriers) through channels, with constraints in line with previous occam discipline for safe and efficient programming. This paper reconciles these extensions by building a formal (operational) semantics for mobile channels entirely within CSP. These semantics provide two benefits: formal analysis of occam-pi systems using mobile channels and formal specification of implementation mechanisms for mobiles used by the occam-pi compiler and run-time kernel

    A Process Oriented Approach to USB Driver Development

    Get PDF
    Operating-systems are the core software component of many modern computer systems, ranging from small specialised embedded systems through to large distributed operating-systems. The demands placed upon these systems are increasingly complex, in particular the need to handle concurrency: to exploit increasingly parallel (multicore) hardware; support increasing numbers of user and system processes; and to take advantage of increasingly distributed and decentralised systems. The languages and designs that existing operating-systems employ provide little support for concurrency, leading to unmanageable programming complexities and ultimately errors in the resulting systems; hard to detect, hard to remove, and almost impossible to prove correct. Implemented in occam-pi, a CSP derived language that provides guarantees of freedom from race-hazards and aliasing error, the RMoX operating-system represents a novel approach to operating-systems, utilising concurrency at all levels to simplify design and implementation. This paper presents the USB (universal serial bus) devicedriver infrastructure used in the RMoX system, demonstrating that a highly concurrent process-orientated approach to device-driver design and implementation is feasible, efficient and results in systems that are reliable, secure and scalable

    An Evaluation of Intel's Restricted Transactional Memory for CPAs

    Get PDF
    With the release of their latest processor microarchitecture, codenamed Haswell, Intel added new Transactional Synchronization Extensions (TSX) to their processors' instruction set. These extensions include support for Restricted Transactional Memory (RTM), a programming model in which arbitrary sized units of memory can be read and written in an atomic manner. This paper describes the low-level RTM programming model, benchmarks the performance of its instructions and speculates on how it may be used to implement and enhance Communicating Process Architectures

    Prioritised Dynamic Communicating Processes: Part 2

    Get PDF
    This paper illustrates the work presented in 'Part I', giving additional examples of use of channel-types, extended rendezvous and FORKs that lean towards real applications. Also presented are a number of other additions and extensions to the occam language that correct, tidy up or complete facilities that have long existed. These include fixing the PRI ALT bug, allowing an unconditional SKIP guard as the last in a PRI ALT, replicator STEP sizes, run-time computed PAR replication counts, RESULT parameters and abbreviations, nested PROTOCOL definitions, inline array constructors and parallel recursion. All are available in the latest release (1.3.3) of KRoC, freely available (GPL/open source) from: http://www.cs.ukc.ac.uk/projects/ofa/kroc/
    corecore